
Chapter 7
Implicit Collaborations Across the DOE Mission Sciences
The advanced computational biology

simulations described in this white paper
will require computer performance well
beyond what is currently available, but
computational speed alone will not ensure
that the computer is useful for any specific
simulation method. Several other factors
are critical including the size of primary
system memory (RAM), the size and speed
of secondary storage, and the overall
architecture of the computer. This will
undoubtedly be true for global climate,
combustion, and other basis energy science
areas.

Many parallel processing computer
architectures have been developed over the

years, but the dominant parallel
architecture that has emerged is the
distributed memory, multiple instruction-
multiple data architecture (MIMD), which
consists of a set of independent processors
with their own local RAM memory
interconnected by some sort of
communication channel. Such an
architecture is characterized by the
topology and speed of the interconnection
network, and by the speed and memory
size of the individual processors. All of the
current generation of teraFLOP-class
computers, including ASCI Red and Blue
are of this design.

Just as with the computer hardware,
there have been a large number of software
programming paradigms developed for
parallel computers. A great deal of
research has gone into developing software
tools to assist in parallel programming or
even to automatically parallelize existing
single-processor software. Selected
parallelization and debugging tools can
assist and new programming models such
as Object-Oriented programming (using
C++ or FORTRAN90) can help hide the
details of the underlying computer
architecture. At the current time, however,

efficiently using massively parallel
computers primarily involves redesigning
and rewriting software by hand. This is
complicated by the facts that the best serial
(single processor) algorithms are often not
the best suited for parallel computers and
the optimal choice of algorithm often
depends on the details of the computer
hardware.

The different simulation methods
presently used have different requirements
of parallel computer hardware. Simulation
methods which involve calculating
averaged properties from a large number of

Computational modeling plays a key role in all scientific understanding.
Therefore it is probably not surprising that disparate scientific disciplines share
common modeling strategies, algorithmic bottlenecks, and information
technology issues, and use computer scientists and applied mathematicians as a
common resource. In this Section we emphasize what are the cross-cutting
computational problems whose solutions could benefit a large number of
scientific applications, or where technologies should be transferred between the
computational biology domain and other disciplines.



smaller calculations which can be individually
run on gigaFLOP class processors are most
ideally suited for parallelism. These methods
include classical and quantum Monte Carlo, as
well as global optimization methods. In these
simulations a minimal amount of initial data
can be sent to each processor which then
independently calculates a result that is
communicated back to a single processor. By
choosing an appropriate size of problem for
each single processor (problem granularity),
these algorithms will work efficiently on
virtually any MIMD computer, including
separate computer workstations linked by
local-area networks.

The quantum chemical and molecular
dynamics methods, in which all processors are
applied to the calculation of a single chemical
wave function or trajectory, involve much
greater challenges to parallelization and
involve greater constraints on the parallel
computer architecture. Since all processors are
involved in a single computation,
interprocessor communication must occur. It is
the rate of this communication, characterized
in term of raw speed (bandwidth) and
initialization time (latency) that usually limits
the efficient use of parallel computers. The
minimal necessary communication rate
depends exquisitely on the simulation type,
choice of algorithm and problem size.
Generally, it is essential software design
criteria that as the problem scales to larger
size, the ratio of computational operations per
communication decrease (or at least remain
constant), so that for some problem size, the
communication rate will not constitute a
bottleneck. Moreover, it is important that the
work per processor, or “load balance”, scale
evenly so that no processors end up with much
larger computational loads and become
bottlenecks. In a broad sense, the nature of
computational biology simulations—in
particular the physical principle that
interactions attenuate with distance—will

ensure that scalable parallel algorithms can be
developed, albeit at some effort.

Even given the very broad range of
simulation methods required by computational
biology, it is possible to provide some
guidelines for the most efficient computer
architectures. Regarding the size of primary
memory, it is usually most efficient if a copy
of the (6xN) set of coordinates describing a
timestep of a molecular dynamics simulation
or the (NxN) matrices describing the quantum
chemical wavefunction, can be stored on each
processing element. For the biological systems
of the sort described in this white paper, this
corresponds to a minimum of several hundred
megabytes of RAM per processor. Moreover,
since many of the simulation methods involve
the repeated calculation of quantities that
could be stored and reused (e.g. two electron
integrals in quantum chemistry or interaction
lists in molecular dynamics), memory can
often be traded for computer operations so that
larger memory size will permit even larger
simulations. Similarly, general estimates can
be made for the mininal interprocessor
communication rates. Since the goal of parallel
processing is to distribute the effort of a
calculation, for tightly coupled methods such
as quantum chemical simulations, it is
essential that the time to communicating a
partial result be less than the time to simply
recalculate it. For example, the quantum
chemical two-electron integrals require 10-100
floating point operations to calculate, so that
they can be usefully sent to other processors
only if that requires less than ~100 cycles to
communicate to send the 8 or 16 byte result.
Assuming gigaFLOP speeds for individual
processing elements in the parallel computers,
this translates roughly to gigabyte/sec
interprocessor communication speeds. (Note
that many partial results involve vastly more
operations, so that they place a much weaker
constraint on the communication rate.



Information Technologies and Database
Management. "Biology is an Information
Science" and the field is poised to put into
practice new information science and data
management technologies directly. Two major
conferences are emerging within the field of
computational biology (ISMB - Intelligent
Systems for Molecular Biology; and
RECOMB - Research in Computational
Biology). Each year, associated workshops
focus on how to push new techniques from
computer science into use in computational
biology. For example, at ISMB-94 a workshop
focused on problems involved in integrating
biological databases; follow-up workshops in
1995 and 1996 explored CORBA and java as
methods toward integration solutions. In 1997,
a post-conference workshop focused on issues
in accurate, usable annotations of genomes.
This year, a pre-conference workshop will
explore how to use text-processing and
machine-translation methods for building
ontologies to support cross-linking between
databases about organisms. All of these
criteria require ultra-high-speed networks to
interconnect students, experimental biologists,
and computational biologists and publicly
funded data repositories. This community will,
for example, benefit directly from every new
distributed networking data exchange tool that
develops as a result of Internet-II and the high-
speed Energy Sciences network.

Data warehousing addresses a
fundamental data management issue: the need
to transparently query and analyze data from
multiple heterogeneous sources distributed
across an enterprise or a scientific community.
Warehousing techniques have been
successfully applied to a multitude of business
applications in the commercial world.
Although the need for this capability is as vital
in the sciences as in business, functional
warehouses tailored for specific scientific
needs are few and far between. A key
technical reason for this discrepancy is that our
understanding of the concepts being explored

in an evolving scientific domain change
constantly, leading to rapid changes in data
representation. When the format of source data
changes, the warehouse must be updated to
read that source or it will not function
properly. The bulk of these modifications
involve extremely tedious, low-level
translation and integration tasks which
typically require the full attention of both
database and domain experts. Given the lack
of the ability to automate this work, warehouse
maintenance costs are prohibitive, and
warehouse "up-times" severely restricted. This
is the major roadblock to a successful
warehouse to for scientific data domains.
Regardless of whether the scientific domain is
genome, combustion, high energy physics, or
climate modeling, the underlying challenges
for data management are similar, and present
in varying degrees for any warehouse. We
need to move towards the automation of
scientifthese tasks. Research will play a vital
role in achieving that goal and in scaling
warehousing approaches to dynamic scientific
domains. Warehouse implementations have an
equally important role; they allow one to
exercise design decisions, and provide a test-
bed that stimulates the research to follow more
functional and robust paths.

Ensuring Scalability on Parallel
Architectures. In all of the research areas,
demonstrably successful parallel implement-
ations must be able to exploit each new
generation of computer architectures that will
rely on increased number of processors to
realize multiple teraflop computing. We see
the use of the paradigm/software support tools
as an important component of developing
effective parallelization strategies that can
fully exploit the increased number of
processors that will comprise a 100 teraflop
computing resource. However, these
paradigm/software support libraries have
largely been developed on model problems at
a finer level of granularity than "real life"
computational problems. But it is the "real



life" problems that involve complexity in
lengthscales, timescales, and severe scalings of
algorithmic kernals that are in need of the next
and future generations of multiple teraflop
computing. The problems described in this
initiative provide for a more realistic level of
granularity to investigate the improved use of
software support tools for parallel
implementations, and may improve the use of
high computing resources by the other
scientific disciplines, such as climate,
combustion, and materials, that need scalable
algorithms.

Even when kernals can be identified and
parallel algorithms can be designed to solve
them, often the implementation does not scale
well with the number of processors. Since 100
teraflop computing will only be possible on
parallel architectures, problems in scalability is
a severe limitation in realizing the goals of the
Accelerated Computational Biotechnology
Initiative. Lack of scalability often arises from
straightforward parallel implementations
where the algorithm is controlled by a central
scheduler and for which communication
among processors is wired to be synchronous.
In the computer science community, various
paradigms and software library support
modules exist for exploring better parallel
implementations. These can decompose the
requirements of a problem domain into high-
level modules, each of which is efficiently and
portably supported in a software library that
can address issues involving communication,
embedding, mapping, etc for a scientific
application of interest.

These tools allow different
decompositions of a parallel implementation to
be rapidly explored, by handling all of the
low-level communication for a given platform.
However, these paradigms and their
supporting software libraries usually are
developed in the context of model
mathematical applications, which are at a finer
level of granularity than "real life"

computational science problems. A unique
opportunity exists to use some of the
computational science problems described in
the previous chapters to refine or redefine the
current parallel paradigms currently in use.
The outcome of this direction could be broader
than the particular scientific application, and
may provide insight in how to improve the use
of parallel computing resources in general.

Meta Problem Solving Environments. In
order to take advantage of teraflop computing
power, biological software design must move
towards an efficient geographically distributed
software paradigm. One novel paradigm is the
"Meta Problem Solving Environment", a
software system based on the "plug and play"
paradigm. Algorithms are encapsulated into
specially designed software modules called
components which the user can link together
produce a simulation. Software components
can exist anywhere on a large computing
network and yet can be employed to perform a
specified simulation on any geographically
distributed parallel computing environment to
which the user has access. In order to satisfy
this design requirement, software components
must run as separate threads, respond to
signals of other components and, in general,
behave quite unlike a standard subroutine
library. Therefore, the software architecture
must specify the rules for a component to
identify standard communication interfaces as
well the rules that govern how a component
responds to signals. Also, components must be
permitted to specify resources and obtain
communication lines.

Although the component based "Meta
Problem Solving Environment" software
paradigm is far more complex than any current
software system employed by the biological
community today, it has many advantages. By
coming together to produce uniform
component design protocols, computational
biologists could quickly apply the latest
algorithmic advances to novel new systems.



Also, simulations could be constructed
using the best available components. For
example, real space force component from one
researcher can be combined with a reciprocal
space component from another and an
integration component from another group,
and could significantly increase computational
efficiency compared to any single biological
computing package. In addition, with good
design protocols, all the components employed
in a given simulation need not be built by
computational biologists. For instance, parallel
FFT component software already exists that
could be used to improve significantly SPME
performance. Finally, the biological
community will not be acting alone in
adopting a component based approach. The
DOE ASCI project is currently using using
tools such as CORBA (Common Object
Request Broker Architecture), and Los Alamos
National Laboratory's PAWS (Parallel
Application Workspace) to produce
component based software products.
Therefore, with appropriate communication
within the community and with others,
biological computational scientists can begin
to produce a new software standard that will
function well in large geographically
distributed environment and very quickly lead
to teraflop computing capability.

ACPI Usability Evaluation and
Benchmarking. In the last five years, there has
been major progress in benchmarking
massively and highly parallel machines for
scientific applications. For example, the NAS
Parallel Benchmarks (NPB) were a major step
toward assessing the computational
performance of early MPPs, and served well to
compare MPPs with parallel vector machines.
Based on numerical algorithms derived from
CFD and aerospace applications, the NPB
soon were widely adopted as an
intercomparison metric of parallel machine
performance. Subsequently the NPB were
included in the international benchmarking
effort, PARKBENCH (PARallel Kernels and

BENCHmarks). In 1996, portable HPF and
MPI versions of the NPB were made available.
With increasing industry emphasis on
parallelism, a number of other organizations,
as part of their procurement process, are
designing benchmark suites to evaluate the
computational performance of highly parallel
systems.

The ACPI program will involve both
research and development activities and
implementation of comprehensive climate
modeling simulations. Therefore, its success
will depend not only on raw computational
performance but also on an effective
environment for code development and
analysis of model results. These issues suggest
that a new benchmarking approach is needed,
one that evaluates not only raw computational
performance but also system usability. In
addition, there should be formal tracking of
benchmark results throughout the course of the
program to provide an objective measure of
progress. To meet these objectives, ACPI will
support benchmarking and performance
evaluation in four areas:

• Identify or create scalable,
computationally intensive benchmarks
that reflect the production computing
needs of the particular scientific
community or common algorithm, and
evaluate the scalability and capability
of high performance systems.

• Establish system performance metrics
appropriate for scientific modeling.

• Establish usability metrics for
assessing the entire research/
development/ analysis environment.

• Establish a repository of benchmark
results for measuring progress in the
initiative and for international
comparison.

Identify or create scalable,
computationally intensive benchmarks that
reflect the needs of the scientific community.
The purpose of this activity is to develop
benchmarks that can be shared by the



community to gain insight into the
computational performance of machines that
will be proposed by vendors in response to
ACPI. It is well known that the GFlops
performance level achieved on an application
is not a reliable measure of scientific
throughput. For example, an algorithm may
achieve a very high floating point rate on a
certain computer architecture, but may be
inefficient at actually solving the problem.

Therefore, accurate and useful
benchmarks must be based on a variety of
numerical methods that have proven
themselves efficient for various modeling
problems. Benchmarks for scientific
computing applications in general have
traditionally used either a functional approach
or a performance-oriented approach. In the
functional approach, a benchmark represents a
workload well if it performs the function as the
workload, e.g., a modeling workload is
represented by a subset of computational
biology codes. In the performance-oriented
approach, a benchmark represents a workload
well if it exhibits the same performance
characteristics as the workload, e.g., a
structural genomics modeling workload would
be represented by a set of kernels, code
fragments, and a communication and I/O test.
The assumption is that the system performance
can be predicted from an aggregate model of
the performance kernels.

We propose that ACPI use mainly a
functional approach and identify or develop a
set of benchmark models. The benchmark
suite also must include a set of simulated
coupled models. These benchmarks should be
developed in the spirit of the NAS Parallel
Benchmarks (the CFD applications
benchmarks): the models should exhibit all the
important floating point, memory access,
communication, and I/O characteristics of a
realistic model, yet the code should be
scalable, portable, compact, and relatively easy
to implement. As mentioned above, this is a
substantial effort, because many extant

benchmark codes for some scientific modeling
are not readily portable, or are not currently
well suited or even capable of running on more
than a few tens of processors.

Establish system performance metrics
appropriate for scientific modeling. We
propose that ACPI select a few full-scale
scientific applications that are shared across
disciplines, and intercompare parallel systems
using the wall clock seconds per model
application.

Establish usability metrics and system
attributes for assessing the entire
research/development/analysis environment.
The benchmarks in (1) focus on PE
performance alone and do not measure any of
the important system features that contribute to
the overall utility of a parallel system. These
features include code development tools, batch
and interactive management capabilities, I/O
performance, performance of the memory
hierarchy, compiler speed and availability,
operating system speed and stability,
networking interface performance, mean time
between failures or interrupts, etc. Many of
these features have been quite weak on current
highly parallel computers as compared to
vector supercomputers.

We propose that ACPI develop a new set
of utility benchmarks and attributes for highly
and massively parallel machines as well as
clusters of SMPs. The goal of these
benchmarks is to derive a set of metrics that
measure the overall utility of machines and
systems for a productive scientific modeling
environment. Such an environment would
emphasize model flexibility, rapid job
turnaround, and effective capabilities for
analysis and data access. Also, the system
attributes will specify a set of desired
capabilities necessary to administer and
manage the system and its resources. At this
time there is no industry standard benchmark
which addresses these issues. ACPI can drive
the state of the art in performance evaluation
by initiating such an effort.



Establish a repository of benchmark
results for measuring progress in the initiative
and for international comparison.
Benchmarking codes, metrics, and the detailed
benchmark results from the activities in (1),
(2), and (3) must be available to the public and
the high performance computing community
through frequent publication of reports, Web
pages, etc., with the goal of influencing the
computer industry. ACPI will immediately
benefit from using these benchmarks for the
next-generation procurement of production
machines. ACPI will create a central
repository of benchmark codes and
performance data. It will also publish annual
reports about the measured performance gains

and accomplishments of the initiative, as well
as providing international comparison data.

We expect that over the duration of the
ACPI, the rapid development of new high-
performance computing technology will
continue, with rapidly changing architectures
and new software and tools becoming
available. Hence a benchmark must be
designed to be able to evaluate systems across
several hardware generations, diverse
architectures, and changing software
environments. In return, we believe that with a
well-designed benchmark, ACPI can drive the
HPC industry and create a better focus in the
industry on high-end computing.

 

 
 
 
 
 
 



Appendix 1: Glossary
 
Aggregation information: The information
obtained from applying (a set of) operators to
the initial data. For example, monthly sales or
expenses, average length of a phone call, or
maximum number of calls during a given time.

Amino acid: Any of a class of 20 molecules
that are combined to form proteins in living
organisms. The sequence of amino acids in a
protein and hence protein function are
determined by the genetic code.

API (application program interface): An
API is a collection of methods that are used by
external programs to access and interact with a
class or library. Their main function is to
provide a consistent interface to a library,
isolating programs from changes in the library
implementation or functionality.

Automatic Schema Integration:
Determination of identical objects represented
in the schemata of different databases by
programs using a set of built-in rules, without
user intervention.

Base pair: A unit of information carried by
the DNA molecule. Chemically these are
purine and pyrimidine complementary bases
connected by weak bonds. Two strands of
DNA are held together in a shape of a double
helix by the bonds between paired bases.

Bioinformatics: Field of study dealing with
management of data in biological sciences.

Change detection: The process of identifying
when a data source has changed and how. The
types of changes detected include: new data,
modifications to existing data, and schema
changes.

Chromosome: A self-replicating genetic
structure in the cells, containing the cellular
DNA that bears in its nucleotide sequence the
linear array of genes.

Conflicts: When the same concept is
represented in different databases, its

representation may be semantically and
syntactically different. For example, a length
may be defined in different units, or contain a
different set of attributes. These differences
are called conflicts, and must be resolved in
order to integrate the data from the different
sources.

Data cleaning: Removal and/or correction of
erroneous data introduced by data entry errors,
expired validity of data, or by some other
means.

Data ingest: Loading of data into the
warehouse.

Data/schema integration: Merging of
data/schema from different sources into a
single repository, after resolving
incompatibilities among the sources.

Data mining: Analysis of raw data to find
interesting facts about the data and for
purposes of knowledge discovery.

Data warehouse: An integrated repository of
data from multiple, possibly heterogeneous
data sources, presented with consistent and
coherent semantics. Warehouses usually
contain summary information represented on a
centralized storage facility.

Distributed database: A set of geographically
distributed data connected by a computer
network and controlled by a single DBMS
running at all the sites.

DNA (deoxyribonucleic acid): The molecule
that encodes genetic information, a double
stranded heteropolymer composed of four
types of nucleotides, each containing a
different base. See base pair.

Federated databases: An integrated
repository data from of multiple, possibly
heterogeneous, data sources presented with
consistent and coherent semantics. They do
not usually contain any summary data, and all



of the data resides only at the data source (i.e.
no local storage).

Gene: A fundamental physical and functional
unit of heredity. A gene is an ordered sequence
of nucleotides located in a particular position
on a particular chromosome that encodes a
specific functional product (i.e., a protein or
RNA molecule). See gene expression.

Gene expression: The process by which a
gene’s coded information is converted into the
structures present and operating in the cell.
Expressed genes include those that are
transcribed into mRNA and then translated
into protein and those that are transcribed into
RNA molecules only.

Genetic code: The sequence of nucleotides,
coded in triplets along the mRNA, that
determines the sequence of amino acids in
protein synthesis. The DNA sequence of a
gene can be used to specify the mRNA
sequence, and the genetic code can in turn be
used to specify the amino acid sequence.

Genetic map (linkage map): A map of
relative positions of genes or other
chromosome markers, determined on the basis
of how often they are inherited together. See
physical map.

Genome: All the genetic material in the
chromosomes of a particular organism; its size
is generally given as its total number of base
pairs.

Genetic sequencing: The process of
identifying the ordered list of amino or nucleic
acids that form a particular gene or protein.

Global schema: A schema, or a map of the
data content of a data warehouse that
integrates the schemata from several source
repositories. It is "global", because it is
presented to warehouse users as the schema
that they can query against to find and relate
information from any of the sources, or from
the aggregate information in the warehouse.

HGP (human genome project): The U.S.
Human Genome Project is a 15-year effort
coordinated by the U.S. Department of Energy
and the National Institutes of Health to
identify all the estimated 100,000 genes in
human DNA, determine the sequence of the 3
billion chemical bases that make up human
DNA, store this information in databases, and
develop tools for data analysis. To help
achieve these goals, a study of the genetic
makeup of several non-human organisms,
including the common human gut bacterium
Escherichia coli, the fruit fly, and the
laboratory mouse is also underway.

Homology: Here, a relationship of having
evolved from the same ancestral gene. Two
nucleic acids are said to be homologous if their
nucleotide sequences are identical or closely
related. Similarly, two proteins are
homologous if their amino acid sequences are
related. Homology can also be inferred from
structural similarity.

Intelligent search: Procedures which use
additional knowledge to eliminate a majority
of space to be searched in order to retrieve a
set of data items which satisfy a given set of
properties.

JGI (joint genome institute): A massive
DOE sponsored project that will integrate
human genome research based in three of its
national laboratories in California and New
Mexico. The Joint Genome Institute is a
"virtual laboratory" that will sequence
approximately 40 percent of the total human
DNA by 2005 and share information through
public databases.

Knowledge discovery: The process of
identifying and understanding hidden
information and patterns in raw data which are
of interest to the organization and can be used
to improve the business procedures. Data
mining is a single, but very important, step in
this process.



Metadata: Description of the data. Metadata
is used to explicitly associate information with
(and knowledge about) data in a repository.
This information may range from the simple
(it is always an integer) to arbitrarily complex
(it is a floating point value representing the
temperature of an object in degrees Celsius,
and is accurate to 5 significant digits).

Mediated data warehouse architecture: A
data warehouse architecture providing access
to data from various sources, where not all the
data is stored is cached at the warehouse.
Mediators or software agents determine the
best source of data to satisfy user requests and
fetch data from the selected sites in real-time.

Micro-theories: A micro-theory is an
ontology about a specific domain, that fits
within, and for the most part is consistent with,
an ontology with a broader scope. For
example, structural biology fits within the
larger context of biology. Structural biology
will have its own terminology and specific
algorithms that apply within the specific
domain, but may not be useful or identical to,
for example, the genome community.

mRNA (messenger RNA): RNA that serves
as a template for protein synthesis. See genetic
code.

multi-databases: A repository of data from
several, possibly heterogeneous data sources.
They do not provide a consistent view of the
data contained within the data sources, do not
provide summary information, and rarely have
a local data store.

nucleic acid: A large molecule composed of
nucleotide subunits.

Nucleotide: A subunit of DNA or RNA
chemically consisting of a purine or
pyrimidine base, a phosphodiester, and a
sugar. 

object identification: The process of
determining data items representing the same
real-world concepts in data sources, and

merging the information to a single consistent
format. This will allow users to obtain accurate
and unique answers to information requests.

object model: A data model for representation
real-world entities using the concept of objects
which can belong to one of several classes.
The classes have a specialization-
generalization relationship and contain both
data and methods. Objects themselves can be
comprised of other objects.

OLAP (on-line analytical processing):
Analysis of data along various dimensions
(such as time periods, sales areas, and
distributors) so as to obtain summary
information as well as very specific targeted
information to predict business performance
based on various parameters.

ontology framework: A framework for data
management and manipulation based on a
descriptions of inter-relationships of the data
items in a specific domain. This allows a more
targeted search of the data items using a
semantic understanding in addition to using
the syntactic values. 

PDB (protein data bank): The Protein Data
Bank (PDB) is an archive of experimentally
determined three-dimensional structures of
biological macromolecules, serving a global
community of researchers, educators, and
students. The archives contain atomic
coordinates, bibliographic citations, primary
and secondary structure information, as well as
crystallographic structure factors and NMR
experimental data.

partially materialized views: In a mediated
warehouse, a portion of the data represented in
the global schema may not be represented in
the warehouse, but is only accessible through
the mediator. The portion of the data
represented locally is said to be materialized.
Thus, if there is both local and non-local data
represented in the schema, it is said to be
partially materialized.

 



physical map: A map of the locations of
identifiable markers on DNA, regardless of
inheritance. For the human genome, the
lowest-resolution physical map is the banding
patterns on the 24 different chromosomes; the
highest-resolution map would be the complete
nucleotide sequence of the chromosomes. See
genetic (linkage) map.

Protein: A large molecule composed of one or
more chains of amino acids in a specific order;
the order is determined by the sequence of
nucleotides in the gene coding for the protein.
Proteins are required for the structure,
function, and regulation of the body’s cells,
tissues, and organs, and each protein has
unique functions.

protein sequence: The ordered list of amino
acids that make up the protein.

protein taxonomy: Proteins can be grouped
according to several criteria including their
sequence or structural similarity with other
proteins. These groupings are often referred to
as taxonomies.

RNA (ribonucleic acid): A molecule
chemically similar to DNA, involved in the
readout of information stored in DNA.

schema (pl. schemata): A description of the
data represented within a database. The format
of the description varies but includes a table
layout for a relational database or an entity-
relationship diagram.

SCOP: A database of distinct protein
structures and their structural classifications,
along with detailed information about the close
relatives of any particular protein.

Sequencing: Determination of the order of
nucleotides in a DNA or RNA molecule, or the
order of amino acids in a protein molecule. 

SWISS-PROT: is a protein sequence database
with high level of annotations (such as the
description of the function of a protein, its
domains structure, post-translational
modifications, variants, etc.), and a minimal
level of redundancy.

 terabyte: A measurement of the amount of
computer storage. Equivalent to 1,000
gigabytes or 1,000,000 megabytes of
information.

unstructured data: Refers to data whose
structure is not well defined or strictly
enforced. For example, web pages and flat
files are unstructured data while a relational
database is structured.

 

 

 

 


